мая 062017
 

Простой кардиомонитор своими руками

Еще одним методом получения информации о работе сердца является электрокардиография, который представляет собой недорогой метод инструментальной диагностики сердца, позволяющий проверить его работу и определить нарушения в ней. Для этой цели компанией Analog Devices разработана микросхема AD8232. AD8232 представляет собой интегрированный блок обработки сигнала для ЭКГ и других биопотенциальных задач. Микросхема предназначена для получения, усиления и фильтрации слабых биопотенциальных сигналов в условиях сильных помех.

Основные характеристики AD8232:

  • Низкое потребление тока: 170 мкА
  • Напряжение питание: однополярное от 2 до 3,5 В
  • Rail to Rail выходной сигнал
  • Количество электродов: 2 или 3
  • Количество отведений ЭКГ: 1
  • Встроенный фильтр ВЧ помех
  • 2-полюсный фильтр высоких частот
  • 3-полюсный фильтр низких частот
  • Коэффициент ослабления синфазного сигнала: 80 дБ
  • Детектор контакта электродов
  • Выходной сигнал: аналоговый

На основе данной микросхемы в продаже присутствуют модули, удобные для изучения и использования, в комплект входит не только плата с AD8232 и обвязкой, но и набор электродов в зависимости от комплектации.

Схема модуля:

Для получения кардиограммы электроды прикрепляются на грудь и конечности (в зависимости от выбранного отведения), с которых снимаются сигналы электрической активности сердца.

Электрическая система сердца управляет генерацией и распространением электрических сигналов по сердечной мышце, в результате чего сердце периодически сокращается и расслабляется, перекачивая кровь. В процессе цикла работы сердца происходит упорядоченный процесс деполяризации. Деполяризация – это резкое изменение электрического состояния клетки, когда отрицательный внутренний заряд клетки становится на короткое время положительным. В сердце деполяризация начинается в специализированных клетках водителя сердечного ритма в синусно-предсердном узле. Далее волна возбуждения распространяется через атриовентикулярный (предсердно-желудочковый) узел вниз к пучку Гиса, переходя в волокна Пуркинье и далее приводит к сокращению желудочков. В отличие от других нервных клеток, которые неспособны генерировать электрический сигнал в автоколебательном режиме, клетки синусно-предсердного узла способны создавать ритмичный электрический сигнал без внешнего воздействия. Точнее, внешние воздействия (например, физическая нагрузка) влияют только на частоту колебаний, но не нужны для запуска этого «генератора». При этом происходит периодическая деполяризация и реполяризация клеток водителя ритма. В электрокардиостимуляторе также имеется генератор стабильной частоты, выполняющий роль синусно-предсердного узла. Мембраны живых клеток действуют как конденсаторы. Из-за того, что процессы в клетках электрохимические, а не электрические, деполяризация и реполяризация в них происходят намного медленнее, чем в конденсаторе той же емкости.

Расположенные на теле пациента электроды обнаруживают небольшие изменения потенциалов на коже, которые возникают вследствие деполяризации сердечной мышцы при каждом ее сокращении.

Таким образом, на основе AD8232 можно строить портативные устройства для мониторинга за здоровьем сердечной системы (ЭКГ, кардиомониторы и др.). А кроме этого данная микросхема пригодна для использования получения данных о сокращениях других мышц, что потенциально дает возможность использовать ее в бионике и протезировании. В этом случае необходимо подключать электроды к мышцам, активность которых контролируется.

Выбирая микроконтроллеры STM32 для портативных устройств рационально использовать микроконтроллеры серии L с низким потреблением тока для увеличения времени работы от аккумулятора. В нашем случае для ознакомления используется STM32F1.

В основе схемы лежит микроконтроллер STM32F103C8T6, для индикации используется TFT LCD дисплей ILI9341 с интерфейсом SPI. Схема питается от 5 вольт (можно использовать Power Bank), до необходимого уровня напряжение питания понижается с помощью стабилизатора напряжения AMS1117 3v3 или любого другого стабилизатора напряжения с нужными параметрами. Кроме дисплея в качестве индикатора сердцебиения используется бузер со встроенным генератором. При появлении пика удара сердца на время этого пика включается бузер.

Программа микроконтроллера имеет два меню: основное меню, где на дисплее строится кардиограмма и отображается частота сердечных сокращений и меню настроек, где можно задать коэффициенты для отображения кардиограммы по высоте и по ширине, а также задать порог счета сердечных сокращений. Последний параметр задается относительно окна кардиограммы от 0 до 200 – это порог, в который входят только пики ударов сердца. Настройки сохраняются в flash памяти микроконтроллера. Для надежности используется последняя страница памяти, чтобы наверняка не пересекать память, в которую записана программа микроконтроллера. Для управления меню используется три кнопки S2-S4. Кнопка S2 переключает меню, а кнопки S3 и S4 регулируют настройки. Значения настроек здесь достаточно абстрактны и привязаны к коду. Первая настройка задает время задержки между измерениями АЦП и построением графика, то есть чем больше задержка, тем больше времени нужно на заполнение экрана и тем более сжат график. Вторая настройка задает коэффициент, который делит измеренное значение АЦП — при максимальном значении 4095 делим на 20 и получаем 204,75, то есть практически весь размах значений мы укладываем в 200 пикселей экрана, отведенного под график. Изменением этого коэффициента можно увеличивать или уменьшать график по оси Y. Последняя настройка задает порог с учетом второй настройки для определения пика. Выходя за это значение программа понимает когда произошел удар сердца. Между Этими пиками фиксируется время, по которому рассчитывается частота сердечных сокращений.

В программе присутствует визуализация отклонения ЧСС (частоты сердечных сокращений), если она слишком маленькая или слишком большая график ЭКГ на дисплее начинает отрисовываться красным цветом. Модуль MOD1 это рассматриваемый модуль на основе AD8232. Частота сердечных сокращений вычисляется как среднее значение пяти последних измерений.

Три электрода, входящих в комплект, подключаются к модулю через разъем и сами электроды крепятся на теле человека. В моем случае желтый электрод соответствует RL (правая нога), красный RA (правая рука), зеленый LA (левая рука). Так же соответственно электроды крепятся и на груди. Эти контакты электродов на модуле так же продублированы в виде контактов, к которым можно подключать свои провода с электродами. При использовании проводов из комплекта обязательно стоит прозвонить контакты, чтобы убедиться, что они соответствуют цветам, что не всегда встречается. Круглые электроды, которые входят в комплект являются одноразовыми. После их использование клейкость резко ухудшается, а гель в середине для получения надежного контакта с кожей высыхает. После первых экспериментов не стоит спешить их выбрасывать, для продолжения экспериментов достаточно смочить гель водой (я воду немного подсаливал), тогда он станет снова вязким, клейким и токопроводящим. Такие электроды самые дешевые и простые, при желании можно найти в продаже многоразовые электроды без клейких элементов, работающие как присоски. Но даже в этом случае нужно использовать специальный гель для надежного контакта электрода с кожей. Самым простым вариантом электрода может быть металлическая пластинка или шайба (монета), смоченная в соленой воде, подключенная к модулю AD8232. Такой вариант электрода максимально бюджетный и не сгодится для продолжительного использования — при высыхании воды контакт начнет ухудшаться, что приведет к ухудшению результатов измерения.

Модуль AD8232 имеет детектор подключения электродов – контакты L+ и L- выдают логическую единиц, если электроды не подключены и логический ноль, если подключены. На экране дисплея это отображается символами L+ и L-. Если их цвет зеленый, значит электроды подключены, если красный – отключены. Наличие шума на графике ЭКГ может быть связано с такими нюансами как контакт электродов и их верное расположение на теле, наличие дефектов в проводах электродов и их повреждение. В отличии от оптических датчиков, движения тела при измерении дают намного меньшие искажения графика на экране, но все же дают, так как при движении напряжения других мышц тела, расположенных близко к электроду, также дают некоторые импульсы.

Данная схема не исключает использования других датчиков с аналоговым выходом, например, затрагиваемых ранее оптических датчиков. Достаточно выводы PA1 и PA2 микроконтроллера подключить к земле или питанию, чтобы символы на дисплее не моргали.

P.S. Данное устройство не может быть применено для самостоятельно диагностики, только квалифицированный врач может делать какие-либо заключения о здоровье. Данное устройство создавалось только в познавательных и ознакомительных целях.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин
IC1 МК STM32 STM32F103C8 1 Поиск в Fivel
VR1 Линейный регулятор AMS1117-3.3 1 Поиск в Fivel
MOD1 Модуль ЭКГ AD8232 1 Поиск в Fivel
HG1 TFT LCD ILI9341 1 Поиск в Fivel
Z1 Кварц 8 МГц 1 Поиск в Fivel
HL1 Светодиод 1 Поиск в Fivel
EP1 Бузер 1 Со встроенным генератором Поиск в Fivel
S1-S4 Тактовая кнопка 4 Поиск в Fivel
C1, C2 Конденсатор 22 пФ 2 Поиск в Fivel
C3-C7, C9 Конденсатор 100 нФ 6 Поиск в Fivel
C10 Электролитический конденсатор 100 мкФ 1 Поиск в Fivel
C8 Электролитический конденсатор 220 мкФ 1 Поиск в Fivel
R1 Резистор 100 Ом 1 Поиск в Fivel
R3-R4 Резистор 10 кОм 3 Поиск в Fivel
R5 Резистор 390 Ом 1 Поиск в Fivel

Скачать список элементов (PDF)

Прикрепленные файлы:

QR Code - Take this post Mobile!
Use this unique QR (Quick Response) code with your smart device. The code will save the url of this webpage to the device for mobile sharing and storage.
Понравилось? Поделитесь:

:

Sorry, the comment form is closed at this time.